From b67e685168f12100c746da2a2cf98124c7e1c730 Mon Sep 17 00:00:00 2001
From: ratna kasmala <iss16009@students.del.ac.id>
Date: Fri, 24 Jul 2020 11:49:49 +0700
Subject: [PATCH] Delete ABC_getting_distance.ipynb

---
 ABC_getting_distance.ipynb | 652 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 1 file changed, 652 deletions(-)
 delete mode 100644 ABC_getting_distance.ipynb

diff --git a/ABC_getting_distance.ipynb b/ABC_getting_distance.ipynb
deleted file mode 100644
index 630b98b..0000000
--- a/ABC_getting_distance.ipynb
+++ /dev/null
@@ -1,652 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Kode Program TA 14"
-   ]
-  },
-  {
-   "cell_type": "raw",
-   "metadata": {},
-   "source": [
-    "Daftar isi\n",
-    "\n",
-    "1. Data Preprocessing\n",
-    "1.1 Data Cleaning\n",
-    "1.2 Data Integration\n",
-    "1.3 Data Transformation\n",
-    "\n",
-    "Adapun data yang di proses antara lain:\n",
-    "    Kabupaten Dairi (kab1)\n",
-    "    Kabupaten_Humbang_Hasundutan (kab2)\n",
-    "    Kabupaten_karo (kab3)\n",
-    "    Kabupaten_Samosir (kab4)\n",
-    "    Kabupaten_Simalungun (kab5)\n",
-    "    Kabupaten_Tapanuli_Utara (kab6)\n",
-    "    Kabupaten_Toba_Samosir (kab7)\n",
-    "    \n",
-    "2. Random Data\n",
-    "3. Encoding\n",
-    "4. Fitness Calculation\n",
-    "5. Prediksi Suhu\n",
-    "\n",
-    "PSO Implementation\n",
-    "    Decoding PSO\n",
-    "ACO Implementation\n",
-    "    Decoding ACO\n",
-    "ACO Implementation\n",
-    "    Decoding ABC \n",
-    "\n",
-    "Evaluasi menggunakan VIKOR"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 39,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Library \n",
-    "import pandas as pd\n",
-    "from numpy import * \n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "import math\n",
-    "import csv\n",
-    "import random\n",
-    "import time\n",
-    "import sys\n",
-    "import datetime\n",
-    "import timeit\n",
-    "from sklearn.neighbors import DistanceMetric\n",
-    "from math import radians,cos,sin\n",
-    "from haversine import haversine, Unit\n",
-    "from scipy.spatial import distance\n",
-    "from sklearn.preprocessing import MinMaxScaler\n",
-    "from keras.models import Sequential\n",
-    "from keras.layers import Bidirectional, GlobalMaxPool1D\n",
-    "from keras.layers import LSTM"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 40,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#Load dataset sebelum integrasi\n",
-    "Data1 = pd.read_csv('./tri/Data Toba Samosir - Sheet3.csv')\n",
-    "Data1.drop(Data1.filter(regex=\"Unname\"),axis=1, inplace=True)\n",
-    "Data2 = pd.read_csv('./tri/Data Toba Samosir - Sheet1.csv')\n",
-    "Data2.drop(Data2.filter(regex=\"Unname\"),axis=1, inplace=True)\n",
-    "Data3 = pd.read_csv('./tri/List_city.csv')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 41,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#Data1\n",
-    "#Data2\n",
-    "#Data3"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 42,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "start = datetime.datetime.strptime(\"21-07-2020\", \"%d-%m-%Y\")\n",
-    "end = datetime.datetime.strptime(\"22-07-2020\", \"%d-%m-%Y\")\n",
-    "date_generated = [start + datetime.timedelta(days=x) for x in range(0, (end-start).days)]\n",
-    "#print(len(date_generated))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 43,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#cost = input()\n",
-    "cost = 400000\n",
-    "Cost = int(cost)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Random Data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 143,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "[13, 28, 35, 0, 7, 19, 26]"
-      ]
-     },
-     "execution_count": 143,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "id_city = list(Data3['ID_City'])\n",
-    "Data4 = random.sample(range(len(id_city)), 7)\n",
-    "Data4"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Fitness Calculation"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 45,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "class Fitness_value:\n",
-    "    def getting_max_distance():\n",
-    "        max_distance = 0 \n",
-    "        max_distance += len(date_generated) * 720\n",
-    "        return  max_distance\n",
-    "    def getting_max_cost():\n",
-    "        max_cost = 0\n",
-    "        max_cost +=Cost\n",
-    "        return max_cost"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 46,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "720"
-      ]
-     },
-     "execution_count": 46,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Fitness_value.getting_max_distance()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 170,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "[13, 28, 35, 0, 7, 19, 26]"
-      ]
-     },
-     "execution_count": 170,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Data4"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 149,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "class Bee:\n",
-    "    def __init__(self, node_set):\n",
-    "        self.role = ''\n",
-    "        self.path = list(node_set) # stores all nodes in each bee, will randomize foragers\n",
-    "        self.distance = 0\n",
-    "        self.temperature = 0\n",
-    "        self.cycle = 0        \n",
-    "        self.cost = 0"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "Maximum_distance = Fitness_value.getting_max_distance()\n",
-    "Maximum_cost = Fitness_value.getting_max_cost()\n",
-    "path = list(Data[\"ID_City\"])\n",
-    "def get_total_cost(path):\n",
-    "        cost_route = []\n",
-    "        cost = 0\n",
-    "        for i in range(len(path)):\n",
-    "            cost_route.append(Data5.iloc[i][4])\n",
-    "            cost = sum(cost_route)\n",
-    "        return cost "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 153,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def getting_distance(Path):\n",
-    "    distance_route = []\n",
-    "    last_distance = 0\n",
-    "    distance = 0\n",
-    "    for i in range(0,len(Data4)-1):\n",
-    "        source = Data4[i]\n",
-    "        target = Data4[i+1]\n",
-    "        distance_route.append(Data2.iloc[source][target])\n",
-    "    for i in range(0,len(Data4)-1):\n",
-    "        source = Data4[len(Data4)-1]\n",
-    "        target = Data4[len(Data4)-len(Data4)]\n",
-    "        last_distance = Data2.iloc[source][target] \n",
-    "    distance = sum(distance_route)+last_distance\n",
-    "    return distance"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 154,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "404.6"
-      ]
-     },
-     "execution_count": 154,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "get_distance()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 155,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def initialize_hive(population, data):\n",
-    "    path = Data4\n",
-    "    hive = [Bee(path) for i in range (0, population)]\n",
-    "    return hive"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 156,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def assign_roles(hive, role_percentiles):\n",
-    "    forager_percent = 0.5\n",
-    "    onlooker_percent = 0.5\n",
-    "    role_percent = [onlooker_percent, forager_percent]\n",
-    "    scout_percent = 0.2\n",
-    "    population = len(hive)\n",
-    "    onlooker_count = math.floor(population * role_percentiles[0])\n",
-    "    forager_count = math.floor(population * role_percentiles[1])\n",
-    "    for i in range(0, onlooker_count):\n",
-    "        hive[i].role = 'O'\n",
-    "    for i in range(onlooker_count, (onlooker_count + forager_count)):\n",
-    "        hive[i].role = 'F'\n",
-    "        random.shuffle(hive[i].path)\n",
-    "        hive[i].distance = getting_distance(hive[i].path)\n",
-    "    return hive"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 157,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def mutate_path(path):\n",
-    "    # - will go out of range if last element is chosen.\n",
-    "    path = Data4\n",
-    "    new_path = random.sample(path,len(path))\n",
-    "    return new_path"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 158,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "[13, 26, 0, 28, 35, 7, 19]"
-      ]
-     },
-     "execution_count": 158,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "mutate_path(path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 159,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def forage(bee,limit):\n",
-    "    new_path = mutate_path(bee.path)\n",
-    "    new_distance = getting_distance(new_path)\n",
-    "    if new_distance < bee.distance:\n",
-    "        bee.path = new_path\n",
-    "        bee.distance = new_distance\n",
-    "        bee.cycle = 0 # reset cycle so bee can continue to make progress\n",
-    "    else:\n",
-    "        bee.cycle += 1\n",
-    "    if bee.cycle >= limit: # if bee is not making progress\n",
-    "        bee.role = 'S'\n",
-    "    return bee.distance, list(bee.path)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 160,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def scout(bee):\n",
-    "    new_path = list(bee.path)\n",
-    "    random.shuffle(new_path)\n",
-    "    bee.path = new_path\n",
-    "    bee.distance = getting_distance(bee.path)\n",
-    "   # bee.temperature = Weather\n",
-    "    bee.role = 'F'\n",
-    "    bee.cycle = 0"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 161,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def waggle(hive, best_distance,forager_limit, scout_count):\n",
-    "    best_path = []\n",
-    "    results = []\n",
-    "    for i in range(0, len(hive)):\n",
-    "        if hive[i].role == 'F':\n",
-    "            distance, path = forage(hive[i], forager_limit)\n",
-    "            if distance < best_distance:\n",
-    "                best_distance = distance\n",
-    "                best_path = list(hive[i].path)\n",
-    "            results.append((i, distance))\n",
-    "\n",
-    "        elif hive[i].role == 'S':\n",
-    "            scout(hive[i])\n",
-    "    # after processing all bees, set worst performers to scout\n",
-    "    results.sort(reverse = True, key=lambda tup: tup[1])\n",
-    "    scouts = [ tup[0] for tup in results[0:int(scout_count)] ]\n",
-    "    for new_scout in scouts:\n",
-    "        hive[new_scout].role = 'S'\n",
-    "    return best_distance, best_path"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 162,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def recruit(hive, best_distance, best_path):\n",
-    "    for i in range(0, len(hive)):\n",
-    "        if hive[i].role == 'O':\n",
-    "            new_path = mutate_path(best_path)\n",
-    "            new_distance = getting_distance(new_path)\n",
-    "            if new_distance < best_distance:\n",
-    "                best_distance = new_distance\n",
-    "                best_path = new_path\n",
-    "    return best_distance, best_path"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 163,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def print_details(cycle, path, distance,bee):\n",
-    "    \"\"\"\n",
-    "    Prints cycle details to console.\n",
-    "    \"\"\"\n",
-    "    print(\"CYCLE: {}\".format(cycle))\n",
-    "    print(\"PATH: {}\".format(path))\n",
-    "    print(\"DISTANCE: {}\".format(distance))\n",
-    "   # print(\"COST: {}\".format(cost))\n",
-    "  #  print(\"TEMPERATURE: {}\".format(temperature))\n",
-    "    print(\"BEE: {}\".format(bee))\n",
-    "    print(\"\\n\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 173,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def main():\n",
-    "    # Control parameters\n",
-    "    population = 40\n",
-    "    forager_percent = 0.5\n",
-    "    onlooker_percent = 0.4\n",
-    "    role_percent = [onlooker_percent, forager_percent]\n",
-    "    scout_percent = 0.01\n",
-    "    scout_count = math.ceil(population * scout_percent)\n",
-    "    forager_limit = 500\n",
-    "    cycle_limit = 100\n",
-    "    cycle = 1\n",
-    " #   temperature = Weather\n",
-    "    # Data source\n",
-    "    # data = read_data_from_csv(\"data/data_10.csv\")\n",
-    "    # data = read_data_from_csv(\"data/data_11.csv\")\n",
-    "    data = Data4\n",
-    "    # Global vars\n",
-    "    best_distance = sys.maxsize\n",
-    "    best_path = []\n",
-    "    result = ()\n",
-    "    # Initialization\n",
-    "    hive = initialize_hive(population, data)\n",
-    "    assign_roles(hive, role_percent)\n",
-    "#    cost = get_total_cost(path)\n",
-    "    while cycle < cycle_limit:\n",
-    "        waggle_distance,waggle_path = waggle(hive, best_distance,forager_limit,scout_count)\n",
-    "        if (waggle_distance < best_distance) and (waggle_distance <= Maximum_distance):\n",
-    "            best_distance = waggle_distance\n",
-    "            best_path = list(waggle_path)\n",
-    " #           cost = get_total_cost(path)\n",
-    "  #          temperature = Weather\n",
-    "            print_details(cycle, best_path, best_distance,'F')\n",
-    "            result = (cycle, best_path, best_distance,'F')\n",
-    "        recruit_distance,recruit_path = recruit(hive, best_distance,best_path)\n",
-    "        if (recruit_distance < best_distance) and (recruit_distance <= Maximum_distance):\n",
-    "            best_path = list(recruit_path)\n",
-    "            best_distance = recruit_distance \n",
-    "#            cost = get_total_cost(path)\n",
-    "            print_details(cycle, best_path, best_distance,'R')\n",
-    "            result = (cycle, best_path, best_distance,'R')\n",
-    "        if cycle % 100 == 0:\n",
-    "            print(\"CYCLE #: {}\\n\".format(cycle))\n",
-    "        cycle += 1"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 174,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "CYCLE: 1\n",
-      "PATH: [19, 35, 13, 7, 28, 26, 0]\n",
-      "DISTANCE: 404.6\n",
-      "BEE: F\n",
-      "\n",
-      "\n",
-      "CYCLE: 1\n",
-      "PATH: [7, 0, 35, 26, 13, 19, 28]\n",
-      "DISTANCE: 404.6\n",
-      "BEE: F\n",
-      "\n",
-      "\n",
-      "CYCLE: 1\n",
-      "PATH: [0, 26, 7, 13, 35, 19, 28]\n",
-      "DISTANCE: 404.6\n",
-      "BEE: F\n",
-      "\n",
-      "\n",
-      "CYCLE: 1\n",
-      "PATH: [0, 28, 7, 26, 35, 13, 19]\n",
-      "DISTANCE: 404.6\n",
-      "BEE: F\n",
-      "\n",
-      "\n",
-      "CYCLE: 1\n",
-      "PATH: [13, 28, 0, 26, 19, 7, 35]\n",
-      "DISTANCE: 404.6\n",
-      "BEE: F\n",
-      "\n",
-      "\n"
-     ]
-    }
-   ],
-   "source": [
-    "if __name__ == '__main__':\n",
-    "    for i in range (0, 5):\n",
-    "       \n",
-    "        main()\n",
-    "\n",
-    "    # main()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 175,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def getting_best_path():\n",
-    "    # Control parameters\n",
-    "    population = 40\n",
-    "    forager_percent = 0.5\n",
-    "    onlooker_percent = 0.4\n",
-    "    role_percent = [onlooker_percent, forager_percent]\n",
-    "    scout_percent = 0.01\n",
-    "    scout_count = math.ceil(population * scout_percent)\n",
-    "    forager_limit = 500\n",
-    "    cycle_limit = 100\n",
-    "    cycle = 1\n",
-    "    best_distance = sys.maxsize\n",
-    "    best_path = []\n",
-    "    result = ()\n",
-    "    data = Data4\n",
-    "    # Initialization\n",
-    "    hive = initialize_hive(population, data)\n",
-    "    assign_roles(hive, role_percent)\n",
-    "    #cost = get_total_cost(path)\n",
-    "    waggle_distance,waggle_path = waggle(hive, best_distance,forager_limit,scout_count)\n",
-    "    if (waggle_distance < best_distance) and (waggle_distance <= Maximum_distance):\n",
-    "        best_distance = waggle_distance\n",
-    "        best_path = list(waggle_path)\n",
-    "    recruit_distance,recruit_path = recruit(hive, best_distance,best_path)\n",
-    "    if (recruit_distance < best_distance) and (recruit_distance <= Maximum_distance):\n",
-    "        best_path = list(recruit_path)\n",
-    "        best_distance = recruit_distance \n",
-    "    return best_path"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 179,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "[19, 0, 13, 26, 7, 28, 35]"
-      ]
-     },
-     "execution_count": 179,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "best_path = getting_best_path()\n",
-    "best_path"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.3"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
--
libgit2 0.27.1