diff --git a/Evolutionary.ipynb b/Evolutionary.ipynb new file mode 100644 index 0000000..c71c04b --- /dev/null +++ b/Evolutionary.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "EA" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "N_CITIES = 606 \n", + "CROSS_RATE = 0.1\n", + "MUTATE_RATE = 0.02\n", + "POP_SIZE = 500\n", + "N_GENERATIONS = 500" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "class GA(object):\n", + " def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ):\n", + " self.DNA_size = DNA_size\n", + " self.cross_rate = cross_rate\n", + " self.mutate_rate = mutation_rate\n", + " self.pop_size = pop_size\n", + "\n", + " self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)])\n", + "\n", + " def translateDNA(self, DNA, city_position): # get cities' coord in order\n", + " line_x = np.empty_like(DNA, dtype=np.float64)\n", + " line_y = np.empty_like(DNA, dtype=np.float64)\n", + " for i, d in enumerate(DNA):\n", + " city_coord = city_position[d]\n", + " line_x[i, :] = city_coord[:, 0]\n", + " line_y[i, :] = city_coord[:, 1]\n", + " return line_x, line_y\n", + "\n", + " def get_fitness(self, line_x, line_y):\n", + " total_distance = np.empty((line_x.shape[0],), dtype=np.float64)\n", + " for i, (xs, ys) in enumerate(zip(line_x, line_y)):\n", + " total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys))))\n", + " fitness = np.exp(self.DNA_size * 2 / total_distance)\n", + " return fitness, total_distance\n", + "\n", + " def select(self, fitness):\n", + " idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum())\n", + " return self.pop[idx]\n", + "\n", + " def crossover(self, parent, pop):\n", + " if np.random.rand() < self.cross_rate:\n", + " i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop\n", + " cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points\n", + " keep_city = parent[~cross_points] # find the city number\n", + " swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)]\n", + " parent[:] = np.concatenate((keep_city, swap_city))\n", + " return parent\n", + "\n", + " def mutate(self, child):\n", + " for point in range(self.DNA_size):\n", + " if np.random.rand() < self.mutate_rate:\n", + " swap_point = np.random.randint(0, self.DNA_size)\n", + " swapA, swapB = child[point], child[swap_point]\n", + " child[point], child[swap_point] = swapB, swapA\n", + " return child\n", + "\n", + " def evolve(self, fitness):\n", + " pop = self.select(fitness)\n", + " pop_copy = pop.copy()\n", + " for parent in pop: # for every parent\n", + " child = self.crossover(parent, pop_copy)\n", + " child = self.mutate(child)\n", + " parent[:] = child\n", + " self.pop = pop\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class TravelItinerary(object):\n", + " def __init__(self, n_cities):\n", + " self.city_position = np.random.rand(n_cities, 2)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}