{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "EA" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "N_CITIES = 606 \n", "CROSS_RATE = 0.1\n", "MUTATE_RATE = 0.02\n", "POP_SIZE = 500\n", "N_GENERATIONS = 500" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "class GA(object):\n", " def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ):\n", " self.DNA_size = DNA_size\n", " self.cross_rate = cross_rate\n", " self.mutate_rate = mutation_rate\n", " self.pop_size = pop_size\n", "\n", " self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)])\n", "\n", " def translateDNA(self, DNA, city_position): # get cities' coord in order\n", " line_x = np.empty_like(DNA, dtype=np.float64)\n", " line_y = np.empty_like(DNA, dtype=np.float64)\n", " for i, d in enumerate(DNA):\n", " city_coord = city_position[d]\n", " line_x[i, :] = city_coord[:, 0]\n", " line_y[i, :] = city_coord[:, 1]\n", " return line_x, line_y\n", "\n", " def get_fitness(self, line_x, line_y):\n", " total_distance = np.empty((line_x.shape[0],), dtype=np.float64)\n", " for i, (xs, ys) in enumerate(zip(line_x, line_y)):\n", " total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys))))\n", " fitness = np.exp(self.DNA_size * 2 / total_distance)\n", " return fitness, total_distance\n", "\n", " def select(self, fitness):\n", " idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum())\n", " return self.pop[idx]\n", "\n", " def crossover(self, parent, pop):\n", " if np.random.rand() < self.cross_rate:\n", " i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop\n", " cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points\n", " keep_city = parent[~cross_points] # find the city number\n", " swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)]\n", " parent[:] = np.concatenate((keep_city, swap_city))\n", " return parent\n", "\n", " def mutate(self, child):\n", " for point in range(self.DNA_size):\n", " if np.random.rand() < self.mutate_rate:\n", " swap_point = np.random.randint(0, self.DNA_size)\n", " swapA, swapB = child[point], child[swap_point]\n", " child[point], child[swap_point] = swapB, swapA\n", " return child\n", "\n", " def evolve(self, fitness):\n", " pop = self.select(fitness)\n", " pop_copy = pop.copy()\n", " for parent in pop: # for every parent\n", " child = self.crossover(parent, pop_copy)\n", " child = self.mutate(child)\n", " parent[:] = child\n", " self.pop = pop\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class TravelItinerary(object):\n", " def __init__(self, n_cities):\n", " self.city_position = np.random.rand(n_cities, 2)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }