EA
In [1]:
import numpy as np
In [9]:
N_CITIES = 606 CROSS_RATE = 0.1 MUTATE_RATE = 0.02 POP_SIZE = 500 N_GENERATIONS = 500
In [10]:
class GA(object): def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ): self.DNA_size = DNA_size self.cross_rate = cross_rate self.mutate_rate = mutation_rate self.pop_size = pop_size self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)]) def translateDNA(self, DNA, city_position): # get cities' coord in order line_x = np.empty_like(DNA, dtype=np.float64) line_y = np.empty_like(DNA, dtype=np.float64) for i, d in enumerate(DNA): city_coord = city_position[d] line_x[i, :] = city_coord[:, 0] line_y[i, :] = city_coord[:, 1] return line_x, line_y def get_fitness(self, line_x, line_y): total_distance = np.empty((line_x.shape[0],), dtype=np.float64) for i, (xs, ys) in enumerate(zip(line_x, line_y)): total_distance[i] = np.sum(np.sqrt(np.square(np.diff(xs)) + np.square(np.diff(ys)))) fitness = np.exp(self.DNA_size * 2 / total_distance) return fitness, total_distance def select(self, fitness): idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness / fitness.sum()) return self.pop[idx] def crossover(self, parent, pop): if np.random.rand() < self.cross_rate: i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points keep_city = parent[~cross_points] # find the city number swap_city = pop[i_, np.isin(pop[i_].ravel(), keep_city, invert=True)] parent[:] = np.concatenate((keep_city, swap_city)) return parent def mutate(self, child): for point in range(self.DNA_size): if np.random.rand() < self.mutate_rate: swap_point = np.random.randint(0, self.DNA_size) swapA, swapB = child[point], child[swap_point] child[point], child[swap_point] = swapB, swapA return child def evolve(self, fitness): pop = self.select(fitness) pop_copy = pop.copy() for parent in pop: # for every parent child = self.crossover(parent, pop_copy) child = self.mutate(child) parent[:] = child self.pop = pop
class TravelItinerary(object): def __init__(self, n_cities): self.city_position = np.random.rand(n_cities, 2)